Structure and Dynamics of the GABA Binding Pocket: A Narrowing Cleft that Constricts during Activation

David A. Wagner and Cynthia Czajkowski
Department of Physiology, University of Wisconsin, Madison, Wisconsin 53706

Photo-affinity labeling and mutagenesis studies have identified several amino acids that may contribute to the ligand binding domains of ligand-gated ion channels. These types of studies, however, only generate a one-dimensional, static description of binding site structure. In this study, we used the substituted cysteine accessibility method not only to identify binding pocket residues but also to elicit information about binding site dynamics and structure. Residues surrounding the putative loop C ligand binding domain of the GABA<sub>A</sub> receptor (β<sub>3</sub>V199 to β<sub>3</sub>S209) were individually mutated to cysteine, and the mutant subunits were coexpressed with wild-type α<sub>1</sub> subunits in Xenopus oocytes. N-biotinylaminoethyl methanethiosulfonate (MTSEA-biotin) reacts with cysteines introduced at positions G203, S204, Y205, P206, R207, and S209. This accessibility pattern is not consistent with either an α-helix or β-strand. Instead, G203–S209 seems to form a water-accessible extended coil, whereas V199–T202 appears to be buried in the protein or membrane. Coapplication of either GABA or the competitive antagonist SR-95531 significantly slows MTSEA-biotin modification of cysteines introduced at positions S204, Y205, R207, and S209, demonstrating that these residues line and face into the GABA binding pocket. MTSEA-biotin reaction rates reveal a steep accessibility gradient from G203–S209 and suggest that the binding pocket is a deep narrowing cleft. Pentobarbital activation of the receptor significantly slows MTSEA-biotin modification of cysteines at S204, R207, and S209, suggesting that the binding site may constrict during gating.

Key words: GABA; GABA<sub>A</sub> receptor; binding site; substituted cysteine accessibility method; cysteine mutagenesis; agonist efficacy; protein structure

Received Aug. 25, 2000; revised Oct. 10, 2000; accepted Oct. 23, 2000.

This work was supported in part by National Institute of Neurological Disorders and Stroke Grants NS10579 (to D.W.) and NS34727 (to C.C.). C.C. is a recipient of the Burroughs Welcome Fund New Investigator Award in the Basic Pharmacological Sciences. We thank Amy Kucken, Jeremy Teisseire, Dr. Andrew Boileau, Dr. Meyer Jackson, and Dr. Matt Jones for critical reading of this manuscript.

Correspondence should be addressed to Dr. Cynthia Czajkowski, University of Wisconsin, Department of Physiology, Room 197 MSC, 1300 University Avenue, Madison, WI 53706. E-mail: czajkowski@physiology.wisc.edu.

Copyright © 2001 Society for Neuroscience 0270-6474/01/210067-08$15.00/0

**RESULTS**

Cysteine mutation of the $\beta_2$ loop C region

Mutations at $\beta_2$Y205 and $\beta_2$T202 cause large shifts in EC$_{50}$ values of $\alpha_2$mut and $\alpha_3$mut receptors but have no effect on direct activation of receptors by pentobarbital (Amin and Weiss, 1993), indicating that these residues may contribute to the ligand binding pocket. These residues align with putative ligand binding domains of the nACH $\alpha$ subunit (Dennis et al., 1988) and the glycine receptor $\alpha$ subunit (Vandenberg et al., 1992), and this region has been termed loop C (Corringer et al., 2000). To fully evaluate the contribution of the loop C region to ligand binding and gating in the GABA$_A$ receptor, 11 cysteine mutants were made at positions V199, F200, S201, T202, G203, S204, Y205, P206, R207, L208, and S209 (Fig. 1). The $\beta_2$ cysteine mutants were subcloned into pGH19 (Liman et al., 1992; Robertson et al., 1996) for expression in *Xenopus laevis* oocytes. All $\beta_2$ cysteine mutants were verified by double-stranded DNA sequencing. The $\beta_2$ cysteine mutants have been named, using the single letter code, as wild-type residue, residue number, and mutated residue.

Expression in oocytes and voltage-clamp analysis. Oocytes from *Xenopus laevis* were prepared and injected with cRNA as described previously (Boileau et al., 1998). GABA$_A$ receptor rat $\alpha_1$, $\beta_2$, or $\beta_3$ cysteine mutants in pGH19 were injected by injection of cRNA into oocytes at 20 ng of RNA per oocyte. Residues in photo-affinity labeling or mutagenesis are shown in bold (Galzi and Changeux, 1994). Residues in $\beta_2$ that were mutated to cysteines are denoted by a C above the wild-type residue.

**MATERIALS AND METHODS**

Site-directed mutagenesis. The $\beta_2$ cysteine mutant constructs were made by recombinant PCR, which has been described previously (Kucken et al., 2000). Cysteine substitutions were made in the rat $\beta_2$ subunit by recombinant PCR, which has been described previously (Kucken et al., 2000). Cysteine substitutions were made in the rat $\beta_2$ subunit, which was injected at 100 ng $\beta_2$T202C per oocyte. RNA was concentrated by measuring absorbance at 260 nm and confirmed by observation of ethidium staining of RNA run out on agarose gels. The oocytes were maintained in ND96 (in mM: 96 NaCl, 2 KCl, 1 MgCl$_2$, 1.8 CaCl$_2$, and 10 HEPES, pH 7.4) supplemented with 100 µg/ml gentamicin and 100 µg/ml BSA for 2–14 d and used for electrophysiological recordings.

Oocytes under two-electrode voltage-clamp (V$_{hold}$ of −80 mV) were perfused continuously with ND96 recording solution at a rate of 5 ml/min. The bath volume was 200 µl. Drugs and reagents were dissolved in ND96, except for N-biotinyl methanethiosulfonate (MTSEA-biotin), which was made as a stock solution in DMSO and diluted to working concentrations in ND96. [DMSO] was ≤1% in final solutions and did not affect GABA$_A$ receptor properties. Standard two-electrode voltage-clamp recording was performed using a Genes-Clamp 500 (Axon Instruments, Foster City, CA) interfaced to a computer with a Digidata 1200 (Axon Instruments). Electrodes were filled with 3 M KCl and had a resistance of 0.5–1.5 MΩ. Data acquisition and analysis were performed using pClamp (Axon Instruments).

EC$_{50}$ analysis. To compensate for slow drift in current responses to GABA application (I$_{GABA}$) and pentobarbital application (I$_{pentobarb}$), dose–response trials were performed by applying a fixed concentration of GABA just before the test concentration of agonist. Before curve fitting, currents evoked by each test concentration were normalized to the concentration of antagonist that blocks half of I$_{GABA}$. The protocol was as follows: apply GABA (EC$_{50}$–EC$_{90}$) for 5 sec, wash for 30 sec, apply MTSEA-biotin for 5–20 sec, wash for 2.5 min, and repeat sequence (see Fig. 4). This protocol was repeated until the reaction was complete (I$_{GABA}$ did not change). To accommodate for the disparate rates at which MTSEA-biotin reacts with the various mutants, the concentration of MTSEA-biotin was modified by applying the following sequential applications of MTSEA-biotin on I$_{GABA}$. The protocol was as follows: apply GABA (EC$_{50}$–EC$_{90}$) for 5 sec, wash for 30 sec, apply MTSEA-biotin for 5–20 sec, wash for 2.5 min, and repeat sequence (see Fig. 4).

Rate of reaction assays. The rate at which MTSEA-biotin covalently modified introduced cysteines was determined by observing the effects of sequential applications of MTSEA-biotin on I$_{GABA}$. The data gathered with the rate of reaction protocol was plotted as I$_{GABA}$ versus cumulative time of MTSEA-biotin exposure. The pseudo-first-order reaction constant (k) was determined by fitting the plotted data to a single exponential decay equation: $y = (span - span \times e^{-kt}) + plateau$, where span = max − plateau. The second-order rate constant (k$_2$) was determined by dividing the pseudo-first-order rate constant by the concentration of MTSEA-biotin used (Pascual and Karlin, 1998). To verify the accuracy of our protocol, k$_2$ was determined at two different concentrations of MTSEA-biotin for several of the mutants.

Statistical analysis. When determining EC$_{50}$, IC$_{50}$, or k, complete data sets were obtained from individual oocytes. Curve fitting was subsequently performed on the data from each oocyte, and the resultant parameters were used in statistical analysis. Statistical analysis for significant differences was performed by one-way ANOVA with Dunnett’s post hoc test for multiple independent samples. In the case of EC$_{50}$ and IC$_{50}$ results, analysis for significance was performed using log values. All curve fits and statistical analysis were performed using Prism software (GraphPad Software Inc., San Diego, CA).

**REFERENCES**

Wagner and Czajkowski • GABA$_A$ Receptor Binding Site Structure and Function

1973; Chou, 1974): $K_i = IC_{50}/([A]/EC_{50})$, where [A] is the concentration of GABA used, and EC$_{50}$ is the GABA-EC$_{50}$ for the mutant in question.

Measurement of MTSEA-biotin effects. All oocytes were tested for stability of I$_{GABA}$ before addition of MTSEA-biotin (Toronto Research Chemicals Inc., North York, Canada) by applying a 5 sec pulse of GABA every 10 min until the peak currents varied by <3% from one trial to the next. Stability was usually obtained after three to six trials (30–60 min). GABA concentrations ranged between EC$_{50}$ and EC$_{90}$. After the GABA response stabilized, we bath applied freshly diluted MTSEA-biotin (2 mM) for 2 min, washed for 5 min, and then recorded I$_{GABA}$ at the same concentration used before MTSEA-biotin treatment. The covariant effect of MTSEA-biotin was calculated as (I$_{GABA}$/I$_{GABA}$post)$^{IC_{50}}$/IC$_{50}$, or pentobarbital (20 µM or 1 mM) with the MTSEA-biotin. The full data gathered with the rate of reaction protocol was plotted as $I_{GABA}$ versus cumulative time of MTSEA-biotin exposure. The pseudo-first-order reaction constant (k) was determined by fitting the plotted data to a single exponential decay equation: $y = (span - span \times e^{-kt}) + plateau$, where span = max − plateau. The second-order rate constant (k$_2$) was determined by dividing the pseudo-first-order rate constant by the concentration of MTSEA-biotin used (Pascual and Karlin, 1998). To verify the accuracy of our protocol, k$_2$ was determined at two different concentrations of MTSEA-biotin for several of the mutants.

Statistical analysis. When determining EC$_{50}$, IC$_{50}$, or k, complete data sets were obtained from individual oocytes. Curve fitting was subsequently performed on the data from each oocyte, and the resultant parameters were used in statistical analysis. Statistical analysis for significant differences was performed by one-way ANOVA with Dunnett’s post hoc test for multiple independent samples. In the case of EC$_{50}$ and IC$_{50}$ results, analysis for significance was performed using log values. All curve fits and statistical analysis were performed using Prism software (GraphPad Software Inc., San Diego, CA).

RESULTS

Cysteine mutation of the $\beta_2$ loop C region

Mutations at $\beta_2$Y205 and $\beta_2$T202 cause large shifts in EC$_{50}$ values of $\alpha_2$mut and $\alpha_3$mut GABA$_A$ receptors but have no effect on direct activation of receptors by pentobarbital (Amin and Weiss, 1993), indicating that these residues may contribute to the ligand binding pocket. These residues align with putative ligand binding domains of the nACH $\alpha$ subunit (Dennis et al., 1988) and the glycine receptor $\alpha$ subunit (Vandenberg et al., 1992), and this region has been termed loop C (Corringer et al., 2000). To fully evaluate the contribution of the loop C region to ligand binding and gating in the GABA$_A$ receptor, 11 cysteine mutants were made at positions V199, F200, S201, T202, G203, S204, Y205, P206, R207, L208, and S209 of the $\beta_2$ subunit (Fig. 1).

The $\beta_2$ mutants were then coexpressed with wild-type $\alpha$ subunits in *Xenopus* oocytes and physiologically characterized using the two-electrode voltage-clamp technique.

All of the mutant subunits assembled into functional $\alpha_2$mut receptors. Mean maximal responses to GABA ranged from 1 to 10 µA and did not differ significantly from wild type (data not shown). GABA dose–response analysis of the mutant receptors revealed six residues that cause shifts in EC$_{50}$-GABA values when mutated to cysteine, demonstrating that EC$_{50}$-GABA is exquisitely sensitive to perturbation of this domain. The F200C, S201C, or
The efficacy of wild-type and mutant receptors as measured by current traces represents a 5 min wash with ND96. A 5 sec application of saturating P4S (wild type, 1 mM; S201C, 10 mM) or GABA (wild type, 1 mM; S201C, 100 mM). 

Y205C mutations resulted in 4800- to 18,000-fold increases in IC50 values relative to wild type, whereas the T202C, G203C, and F200C mutations caused significant shifts in the IC50 values for direct activation of the receptor by pentobarbital (Table 1). Notably, the mutations that reduced EC50-GABA values had much smaller effects on the apparent affinity of SR-95531. This could be attributable to the fact that SR-95531, a much larger molecule than GABA, may enjoy extra binding interactions that make it more tolerant to a single point mutation within the binding pocket.

**Determining agonist efficacy in cysteine mutants**

Receptor occupancy and gating of LGICs can be most simply described by the model represented in Scheme 1 (del Castillo and Katz, 1957).

\[
\frac{[A]}{[E] + [A]R} \rightarrow \frac{[A]}{[E] + [A]R^*}
\]

In this model, the microscopic affinity for agonist is represented by the dissociation constant (K1) and agonist efficacy is represented by E, where E is the ratio of the number of fully liganded receptors that are open to the number of fully liganded receptors that are closed (Colquhoun, 1998). When using highly efficacious agonists (E > 10), changes in efficacy have little effect on maximum current and can be difficult or impossible to detect. For instance, if using an agonist with E = 20, a mutation that causes a twofold reduction of efficacy will only produce a 5% change in Imax. To determine whether the cysteine mutations that shift EC50-GABA also cause shifts in efficacy, experiments were performed using piperidine-sulfonic acid (P4S), which acts as a partial agonist (E ≈ 1) at α1 containing GABA receptors (Krogsgaard-Larsen et al., 1980; O'Shea et al., 2000).

In oocytes expressing wild-type α1β2 receptors, the ratio of current elicited by a saturating concentration of P4S to current elicited by a saturating GABA concentration (Imax-P4S/Imax-GABA) was 0.50 (Fig. 2B,C). In oocytes expressing α1β2-F200C receptors, the Imax-P4S/Imax-GABA ratio (0.45) was not significantly different from wild type, indicating that this mutation has no effect on agonist efficacy. However, oocytes expressing α1β2-S201C and α1β2-R207C receptors had significantly reduced Imax-P4S/Imax-GABA ratios of 0.12 and 0.20, respectively (Fig. 2B,C). These results demonstrate that mutation of either β2-S201 or β2-R207 to cysteine reduces agonist efficacy at the GABA binding site. A reduction in efficacy can also result in a reduction of the Hill coefficient (Colquhoun, 1998) and may explain why α1β2-S201C receptors have a significantly reduced Hill coefficient (nH) for GABA (Fig. 2A, Table 1). It was not possible to test the remaining mutants that caused EC50-GABA shifts (T202C, G203C, and Y205C) for changes in efficacy because their severely reduced affinities require concentrations of GABA near or above 1 mM to elicit maximal responses.

**Reaction of introduced cysteines with MTSEA-biotin**

One of the caveats of SCAM analysis is that the data gathered describes the structure of a mutant receptor that may not be the same as the structure of a wild-type receptor. Because of this, the results of SCAM studies are most reliable if the introduced mutations do not cause large changes in the functional properties of the receptor. Unfortunately, in domains that are functionally significant, even small changes in structure can translate into noticeable changes in receptor behavior. This seems to be the case for the region in question (β2V199–S209) in which 6 of the 11 mutations caused significant changes in EC50-GABA values. However, the fact that none of the mutations significantly affected direct activation by pentobarbital and no significant difference in Imax-GABA was detectable suggests that the global structure of the receptor was not altered by any of the cysteine mutations, and it

R207C mutations caused 70- to 300-fold shifts in EC50-GABA values relative to wild type, whereas the T202C, G203C, and Y205C mutations resulted in 4800- to 18,000-fold increases in EC50-GABA values (Fig. 2A, Table 1). All of these mutations (with the exception of R207C) also caused significant shifts in the IC50 values of the competitive antagonist SR-95531 (12- to 100-fold increases), but none of the mutations had a significant effect on the EC50 values for direct activation of the receptor by pentobarbital (Table 1). Notably, the mutations that reduced EC50-GABA have much smaller effects on the apparent affinity of SR-95531.

![Figure 2. GABA dose–response curves and P4S currents.](image-url)
MTSEA-biotin treatment had no significant effect on therefore, the region is likely to be a turn or random coil. it is also affecting is buried in the hydrophobic core of the subunit, but it is also any residue from V199C to T202C, it seems likely that this region tors. Because we cannot detect reaction of MTSEA-biotin with V199C-, F200C-, S201C-, T202C-, and L208C-containing recep-

is likely that the changes in EC_{50,GABA} represent small local effects. In addition, cysteine substitution of five of the residues mutated had no discernable effect on any of the receptor properties that we assayed, making them ideal candidates for this study.

Reactivity of wild-type α₁β₂ GABA_A receptors with the sulphydryl-specific reagent MTSEA-biotin caused no significant change in GABA-mediated current (Fig. 3). Therefore, if MTSEA-biotin treatment alters I_{GABA} in a mutant receptor, we assume that MTSEA-biotin has modified the introduced cysteine. MTSEA-biotin treatment significantly decreased I_{GABA} in 6 of the 11 mutant receptors tested (Fig. 3). For each affected mutant, I_{GABA} was inhibited as follows: G203C, −36 ± 9%; S204C, −26 ± 5%; Y205C, −98 ± 1%; P206C, −47 ± 13%; R207C, −55 ± 5%; S209C, −85 ± 1% (mean ± SEM; % inhibition = 100 × [(I_{GABA,post MTSEA-biotin}/I_{GABA,pre MTSEA-biotin}) − 1]). Because six of the seven consecutive residues from G203–S209 reacted with MTSEA-biotin, the accessibility pattern of this region is not predictive of an α-helix or β-strand and, therefore, the region is likely to be a turn or random coil. MTSEA-biotin treatment had no significant effect on I_{GABA} from V199C-, F200C-, S201C-, T202C-, and L208C-containing receptors. Because we cannot detect reaction of MTSEA-biotin with any residue from V199C to T202C, it seems likely that this region is buried in the hydrophobic core of the subunit, but it is also possible that these residues react with MTSEA-biotin without affecting I_{GABA}.

Observation of reaction of an introduced sulphydryl with a methanethiosulfonate (MTS) reagent can also provide information about the dimensions of the binding site crevice. MTSEA-biotin is composed of two distinct structural domains: a flexible tail ~14 Å long and 2.5 Å in diameter, and a 4 × 5 Å planar head group. The reactive disulfide is near the end of the tail, ~12 Å from the head group. Therefore, any residue that reacts with MTSEA-biotin must be accessible via an aqueous pathway >2.5 Å in diameter and ~12 Å deep. GABA is a linear molecule ~6 Å long and 3 Å in diameter, and the dimensions of SR-95531 are ~16 Å long and 6 Å in diameter.

**Measurement of MTSEA-biotin reaction rates**

The rate at which MTSEA-biotin reacts with a cysteine side chain is determined by the physical environment of the sulphydryl group (e.g., steric hindrance to reaction) and the ionization of the sul-

| Receptor | GABA | | | | SR-95531 | | | | PB | | |
|----------|------|---|---|---|---|---|---|---|---|---|---|---|
| α₁β₂ Wild type | 4.3 ± 1.2 | 1.1 | 8 | 1.0 | 0.12 ± 0.02 | 8 | 1.0 | 570 ± 66 | 5 | 1.0 | |
| α₁β₂-V199C | 3.1 ± 0.4 | 1.4 | 4 | 0.7 | 0.08 ± 0.01 | 3 | 0.6 | 577 ± 195 | 5 | 1.0 | |
| α₁β₂-F200C | 1292 ± 170 | 11.1 | 4 | 300 | 4.34 ± 2.6 | 3 | 36.2 | 712 ± 96 | 3 | 1.2 | |
| α₁β₂-S201C | 725 ± 160 | 0.5 | 4 | 170 | 1.42 ± 0.3 | 3 | 11.8 | 1038 ± 425 | 3 | 1.8 | |
| α₁β₂-T202C | 61100 ± 10900* | 1.0 | 5 | 14000 | 1.90 ± 0.4 | 3 | 15.8 | 690 ± 170 | 3 | 1.2 | |
| α₁β₂-G203C | 20480 ± 6900* | 1.0 | 10 | 4800 | 4.67 ± 0.4 | 4 | 38.9 | 1088 ± 70 | 3 | 1.9 | |
| α₁β₂-S204C | 1.5 ± 0.3 | 1.1 | 6 | 0.3 | 0.05 ± 0.03 | 5 | 0.4 | 427 ± 86 | 5 | 0.7 | |
| α₁β₂-Y205C | 78000 ± 7070* | 1.4 | 5 | 18000 | 12.40 ± 1.5 | 3 | 103.3 | 800 ± 42 | 4 | 1.4 | |
| α₁β₂-P206C | 2.6 ± 1.0 | 1.2 | 4 | 0.6 | 0.53 ± 0.13 | 6 | 4.4 | 347 ± 46 | 4 | 0.6 | |
| α₁β₂-R207C | 310 ± 30 | 1.3 | 4 | 70 | 0.11 ± 0.02 | 4 | 0.9 | 480 ± 72 | 4 | 0.8 | |
| α₁β₂-L208C | 2.7 ± 0.5 | 1.5 | 5 | 0.6 | 0.07 ± 0.02 | 3 | 0.6 | 327 ± 77 | 5 | 0.6 | |
| α₁β₂-S209C | 5.4 ± 1.1 | 1.1 | 3 | 1.3 | 0.11 ± 0.01 | 3 | 0.9 | 583 ± 105 | 3 | 1.0 | |

EC_{50} and K values are presented as mean ± SEM. An asterisk indicates that the value is significantly different from wild type (p < 0.01). PB, Pentobarbital; wt, wild type; mut, mutant.
residue in a relatively restrictive, nonpolar environment (Pascual and Karlin, 1998). To acquire insight into the physicochemical environment of the loop C domain of the GABA A binding site, we determined the reaction rate of MTSEA-biotin with each of the accessible introduced cysteines (G203C–R207C and S209C).

Reaction rates were measured by serial presentations of a GABA test pulse (EC50–EC80), followed by a 5–20 sec application of MTSEA-biotin. This protocol was repeated until IGABA plateaued, and the data were plotted as I GABA versus cumulative time of exposure to MTSEA-biotin. Single exponential decay curves were fit to the data, and second-order rate constants (k2) for MTSEA-biotin were calculated (Fig. 4A; see Materials and Methods). The measured k2 values span three orders of magnitude (Table 2). The fastest reaction rate was recorded for the most N-terminal residue tested (G203C, 258,000 M–1 s–1), and the rates steadily declined with slowest reaction rate recorded at the most C-terminal residue tested (S209C, 120 M–1 s–1). This steep rate gradient implies that this stretch of amino acids starts in a region in which the sulfhydryl group is in an aqueous environment that is highly accessible to MTSEA-biotin and steadily progresses into a much less accessible cleft.

**Identification of binding site residues**

To identify residues in loop C that line the GABA binding pocket, we measured the second-order rate constant (k2) for reaction of MTSEA-biotin with each accessible introduced cysteine both in the presence of GABA and in the presence of SR-95531. SR-95531, a classical competitive agonist for GABA, binds within the GABA binding pocket. Although evidence suggests that SR-95531 may also allosterically modulate the GABA A receptor (Uchida et al., 1996; Ueno et al., 1997), it does not activate the receptor and clearly does not induce the same change in receptor structure as GABA. Therefore, if the rate at which MTSEA-biotin reacts with an introduced cysteine is slowed by both SR-95531 and GABA, then it is likely that both compounds are sterically interfering with the reaction and that the sulfhydryl side chain is facing into the GABA binding pocket. GABA (at EC60–EC80 concentrations) and SR-95531 (at IC50–IC95 concentrations) significantly slowed the reaction rate of MTSEA-biotin with cysteines introduced at positions S204, Y205, R207, and S209 (Fig. 5, Table 2). Therefore, these residues face into the GABA binding pocket.

**State-dependent changes of binding site conformation**

According to Scheme 1, receptor activation has two distinct steps, binding of agonist and isomerization of the receptor from the closed to open state. The closed-to-open transition involves a global allosteric rearrangement of the receptor that not only opens a gate but also changes the structure of the binding pocket. We examined gating-related structural changes of the GABA binding pocket by measuring the effect of the barbiturate pentobarbital on k2 values for the MTSEA-biotin reaction.

Pentobarbital directly activates the GABA A receptor but does not bind at the same location as GABA (Ito et al., 1996). Because the single channel conductances of GABA A receptors activated by GABA and pentobarbital are similar (Jackson et al., 1982; Akk and Steinbach, 2000), it is likely that the open states of receptors activated by either of these compounds have similar conformations. Therefore, if the rate at which MTSEA-biotin reacts with an introduced cysteine is altered in the presence of pentobarbital, we infer a gating-related structural rearrangement of the binding pocket. Pentobarbital at EC50–EC70 significantly slowed the reaction rate of MTSEA-biotin with cysteines at positions S204, R207, and S209 and significantly increased the rate at position G203 (Fig. 5, Table 2).

In addition to directly activating the GABA A receptor, pentobarbital potentiates GABA currents by binding to a site that is presumably separate from the site responsible for direct activation (Ito et al., 1996). Because the allosteric modulatory site has a higher apparent affinity for pentobarbital than the direct activation site (Thompson et al., 1996), rate changes induced by 1 mM pentobarbital could be attributable to its action at either of these sites.
concentration of pentobarbital was for G203C, in which 50 mM pentobarbital undergoes a change in environment during gating. These residues, which we have demonstrated to be facing into the binding pocket that makes G203C more accessible.

Because pentobarbital has no effect on the rate of reaction at this position, this allosteric response must be caused by changes in affinity of the closed receptor for GABA (or changes in the ability of GABA to induce opening of the receptor (efficacy or $E_D$) and/or changes in the ability of GABA to induce opening of the receptor (efficacy or $E_D$)). Determining which of these parameters is responsible for mutation-induced $E_D$ shifts is difficult (Colquhoun, 1998). However, for receptors that require the binding of two ligands for efficient opening and have relatively low $E_D$ values, a large increase in $E_D$ that is not accompanied by a significant reduction in $I_{max}$ can be attributed to a reduction in $K_D$ (Amin and Weiss, 1993; Anson et al., 1998). In fact, for the $GABA_A$ receptor, a 50-fold increase in EC$_{50}$GABA would have to be accompanied by a >99% reduction in $I_{max}$ for GABA ($K_D$) and/or changes in the ability of GABA to induce opening of the receptor (efficacy or $E_D$).

Second-order rate constants ($k_2$) were calculated by dividing pseudo-first-order rate constants ($k_1$) by the concentration of MTSEA-biotin used during rate experiments, which were as follows: G203C, 1 mM; S204C, 10 mM; Y205C, P206C, and R207C, 200 mM; and S209C, 1 mM. Concentrations of GABA and SR-95531 present during the MTSEA-biotin reaction, which varied according to the affinity of the mutant receptor for each compound, were always between EC$_{50}$–IC$_{90}$ for GABA and IC$_{90}$–IC$_{95}$ for SR-95531. An asterisk indicates that the rate is significantly different from control ($p < 0.01$). PB, Pentobarbital; ND, not determined. Values are mean ± SEM.

Table 2. Summary of second-order rate constants for reaction of MTSEA-biotin with introduced thiols

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Control $k_2 (M^{-1}s^{-1})$</th>
<th>$n$</th>
<th>GABA $k_2 (M^{-1}s^{-1})$</th>
<th>$n$</th>
<th>SR-95531 $k_2 (M^{-1}s^{-1})$</th>
<th>$n$</th>
<th>1 mM PB $k_2 (M^{-1}s^{-1})$</th>
<th>$n$</th>
<th>50 μM PB $k_2 (M^{-1}s^{-1})$</th>
<th>$n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha_1\beta_2$-G203C</td>
<td>257,600 ± 32,700</td>
<td>3</td>
<td>184,400 ± 14,300</td>
<td>3</td>
<td>317,700 ± 19,500</td>
<td>3</td>
<td>579,200 ± 9900*</td>
<td>3</td>
<td>400,100 ± 7300*</td>
<td>3</td>
</tr>
<tr>
<td>$\alpha_1\beta_2$-S204C</td>
<td>12,060 ± 980</td>
<td>5</td>
<td>6050 ± 980*</td>
<td>5</td>
<td>3735 ± 310*</td>
<td>5</td>
<td>5656 ± 1180*</td>
<td>5</td>
<td>14,990 ± 3300</td>
<td>5</td>
</tr>
<tr>
<td>$\alpha_1\beta_2$-Y205C</td>
<td>955 ± 150</td>
<td>5</td>
<td>410 ± 15*</td>
<td>5</td>
<td>285 ± 5*</td>
<td>5</td>
<td>870 ± 40</td>
<td>5</td>
<td>ND</td>
<td>5</td>
</tr>
<tr>
<td>$\alpha_1\beta_2$-P206C</td>
<td>276 ± 41</td>
<td>4</td>
<td>715 ± 70*</td>
<td>3</td>
<td>398 ± 16</td>
<td>3</td>
<td>385 ± 25</td>
<td>3</td>
<td>352 ± 17</td>
<td>3</td>
</tr>
<tr>
<td>$\alpha_1\beta_2$-S209C</td>
<td>120 ± 2</td>
<td>4</td>
<td>67 ± 11*</td>
<td>4</td>
<td>135 ± 10*</td>
<td>4</td>
<td>370 ± 32*</td>
<td>4</td>
<td>690 ± 65</td>
<td>4</td>
</tr>
</tbody>
</table>

Second-order rate constants ($k_2$) were calculated by dividing pseudo-first-order rate constants ($k_1$) by the concentration of MTSEA-biotin used during rate experiments, which were as follows: G203C, 1 mM; S204C, 10 mM; Y205C, P206C, and R207C, 200 mM; and S209C, 1 mM. Concentrations of GABA and SR-95531 present during the MTSEA-biotin reaction, which varied according to the affinity of the mutant receptor for each compound, were always between EC$_{50}$–IC$_{90}$ for GABA and IC$_{90}$–IC$_{95}$ for SR-95531. An asterisk indicates that the rate is significantly different from control ($p < 0.01$). PB, Pentobarbital; ND, not determined. Values are mean ± SEM.

**DISCUSSION**

SCAM analysis of the $\beta_2$V199–S209 (loop C) region of $GABA_A$ receptor identified several amino acid residues that face into the GABA binding pocket and mediate agonist affinity ($K_D$) and efficacy. In addition, we provide evidence that the ligand binding pocket is a deep narrowing structure that constrains during gating.

**Mutations that affect $K_D$**

Mutation to cysteine causes significant shifts in EC$_{50}$GABA for six residues: F200C, S201C, T202C, G203C, Y205C, and R207C. According to the model shown in Scheme 1, shifts in EC$_{50}$GABA can be caused by changes in affinity of the closed receptor for GABA ($K_D$) and/or changes in the ability of GABA to induce opening of the receptor (efficacy or $E_D$). Determining which of these parameters is responsible for mutation-induced EC$_{50}$ shifts is difficult (Colquhoun, 1998). However, for receptors that require the binding of two ligands for efficient opening and have relatively low $E_D$ values, a large increase in $E_D$ that is not accompanied by a significant reduction in $I_{max}$ can be attributed to a reduction in $K_D$ (Amin and Weiss, 1993; Anson et al., 1998). In fact, for the $GABA_A$ receptor, a 50-fold increase in EC$_{50}$GABA would have to be accompanied by a >99% reduction in $I_{max}$GABA for the shift in the dose–response curve to be caused solely by changes in efficacy. Because none of the mutations in this study cause significant reductions in $I_{max}$GABA and the shifts in EC$_{50}$ values range from 70-fold (R207C) to 18,000-fold (Y205C), it is clear that the in-
increases in \( EC_{50} \text{-GABA} \) values reflect, at least in part, a reduction in ligand affinity (\( K_d \)) at the GABA binding site. Although \( I_{\text{max}} \) comparisons between different mutant receptors are problematic because of poor control of expression levels, we feel confident that we would detect a >99% reduction in \( I_{\text{max}} \text{-GABA} \). Moreover, five of the six mutations that shift \( EC_{50} \text{-GABA} \) (all except R207C) also significantly reduce affinity for SR-95531, further suggesting that mutation of F200, S201, T202, G203, Y205, and R207 to cysteine alters the microscopic binding affinity of ligands at the GABA binding site.

When mutation of an amino acid disrupts agonist affinity, it has been used as evidence that the residue in question is located in the binding pocket. This, however, is not proof. Our result, that there is no detectable reaction of MTSEA-biotin with cysteines introduced at the positions F200–T202, suggests that these side chains are not facing into the water-accessible GABA binding pocket. Rather, these residues are likely to be buried in the protein or membrane lipid. Caution, however, must be taken with the interpretation of the accessibility results. The possibility that MTSEA-biotin modifies an introduced cysteine without affecting \( I_{\text{GABA}} \) must also be considered. However, it is unlikely that addition of the large biotin moiety would have no discernable affect on \( I_{\text{GABA}} \) if F200C, S201C, and T202C actually face into the binding pocket. Thus, although mutation of F200, S201, and T202 to cysteine results in large shifts in \( EC_{50} \text{-GABA} \), we believe these residues are not lining the GABA binding pocket.

In contrast, the large shifts in \( EC_{50} \text{-GABA} \) values caused by mutation of Y205 and R207 likely reflect disruptions of residues that line the binding site. Because MTSEA-biotin reacts with cysteines at positions S204, Y205, R207, and S209 and both GABA and SR-95531, we can detect reaction of MTSEA-biotin with a cysteine introduced at this position. When \( In \text{ Binding Pocket} \), the rate at which MTSEA-biotin reacts with a cysteine introduced at this residue is slowed by the presence of both GABA and SR-95531. Relative Reaction Rate, The height of the bar is scaled to the log of \( k_2 \) for each mutant with MTSEA-biotin.

### Structure of the GABA binding pocket

Assessment of the accessibility of introduced cysteines to reaction with MTSEA-biotin reveals direct structural information about loop C of the GABA binding pocket. MTS reagents react \( 10^3 \text{–} 10^6 \) times faster with ionized sulfhydryl groups than they do with protonated sulfhydryls (Roberts et al., 1986). Therefore, an introduced cysteine that reacts with an MTS reagent is likely to be oriented with its side chain in an aqueous environment in which ionization of the sulfhydryl is more probable (Pascual and Karlin, 1998).

Patterns of accessibility can be used to discern the secondary structure of a region. For example, after mutation to cysteine, alternating residues of the \( \alpha_1 \) loop D domain are accessible to MTSEA-biotin, indicating that the region is a \( \beta \)-strand (Boileau et al., 1999). Here we show that six of seven sequential cysteine mutants in the \( \beta_2 \) loop C domain (G203C–R207C and S209C) are available for reaction with MTSEA-biotin. This accessibility pattern does not suggest a regular secondary structure, indicating that the region in question may be an extended coil or loop. This result agrees with secondary structure predictions for the N-terminal domain of the nACh receptor in which the loop C region is predicted to be a coil (Le Nove`re et al., 1999).

Additional structural information emerges from the rates at which the introduced cysteines react with MTSEA-biotin. Two main factors influence these rates: (1) ionization of the sulfhydryl side chain, which is more likely in an aqueous environment, and (2) steric hindrance (i.e., how difficult it is for the MTSEA-biotin molecule to physically approach and interact with the sulfhydryl group). The fast reaction rate measured for G203C (\( k_2 \approx 250,000 \text{ M}^{-1} \text{s}^{-1} \)) indicates that the side chain of this residue is in an aqueous and sterically unrestricted environment such as would exist at the mouth of the binding pocket. The >2000-fold slower reaction rate measured for S209C (\( k_2 \approx 120 \text{ M}^{-1} \text{s}^{-1} \)) indicates that the side chain of this residue is poorly ionized (in a relatively hydrophobic environment), located in a sterically confined region, or both. These are the conditions one might expect to find near the deepest point of the binding pocket. Significantly, the reaction rates for the introduced cysteines between G203 and S209 sequentially decline, almost continually, with progression along the peptide chain (Fig. 6, Table 2). This rate gradient is highly suggestive of a protein domain that traverses an aqueous pocket from its rim to its depths. This type of structure correlates with the water-filled tunnels in the nACh receptor identified by electron microscopy (Miyazawa et al., 1999). We hypothesize that, in the \( \text{GABA}_x \) receptor, at least a portion of these tunnels lie at an \( \alpha_1/\beta_2 \) interface. The fact that none of the introduced cysteines before G203 appear to react with MTSEA-biotin suggests that the polypeptide chain may turn at this glycine (a residue that allows for maximum flexibility) and dive into the hydrophobic core of the protein or the lipid membrane.

### Structural rearrangements involved in receptor gating

It has been speculated that the allosteric transition underlying gating of LGICs is primarily from quaternary rearrangements of the N-terminal domains of subunits with little change in tertiary or secondary structure (Corringer et al., 2000). The results presented here suggest that activation of the receptor involves movement of the \( \alpha_1 \) and \( \beta_2 \) domains of the GABA binding site toward each other. Three residues that face into the binding pocket (S204, R207, and S209) experience reductions in accessibility to MTSEA-biotin during gating. This is exactly the result we would expect if convergence of two subunits were to decrease the vol-
ume of the binding pocket, making it more difficult for MTSEA-biotin to interact with residues in the pocket. Interestingly, GABA causes an increase in accessibility to MTSEA-biotin at position P206. We envision that P206C faces away from the binding pocket and, when GABA binds the area near P206, becomes more accessible to MTSEA-biotin.

**Overall role of loop C in GABA binding and gating**

Some of the results presented in this study are graphically summarized in Figure 6. This region appears to consist of two structurally distinct domains. The C-terminal residues of this domain (S204–S209) predominantly line the GABA binding pocket and are in an aqueous environment. The N-terminal residues (V199–T202) do not appear to be in an aqueous environment and thus are not part of the binding pocket. G203 seems to be a transition residue between these two domains in that it is easily modified by MTSEA-biotin (i.e., in an aqueous environment), but its modification is not slowed by GABA or SR95531 and thus does not seem to be facing into the binding pocket.

Functionally, the roles of the two structural domains seem to converge. The exquisite sensitivity of $K_{D_{\text{GABA}}}$ to perturbation of this entire region implies both domains are critically involved in maintaining the structural integrity of the binding pocket. Additionally, both domains contain residues ($S201$ and $R207$) that, when mutated to cysteine, cause reductions in agonist efficacy, implying that they may be part of the allosteric mechanism coupling binding to channel opening. The result that a cysteine introduced at position G203 experiences an environmental change in the presence of modulatory concentrations of pentobarbital indicates that the loop C region also responds to GABA$A_{\alpha}$ allosteric modulators. Finally, a role for this region in receptor gating is demonstrated by the fact that side chains at positions S204, R207, and S209 experience a change in environment concomitant with gating of the receptor. Thus, the loop C region of the GABA binding site contains dynamic elements that respond to both modulators and channel activation. The agonist-mediated binding site movements may be the initial trigger that drives channel opening.

**REFERENCES**


Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant ($K_i$) and the concentration of inhibitor which causes 50 per cent inhibition ($I_{50}$) of an enzymatic reaction. Biochem Pharmacol 22:309–318.


