A Component of Excitation-Contraction Coupling Triggered in the Absence of the T671-L690 and L720-Q765 Regions of the II-III Loop of the Dihydropyridine Receptor α_{1S} Pore Subunit

Chris A. Ahern, Dipankar Bhattacharya, Lindsay Mortenson, and Roberto Coronado
Department of Physiology, University of Wisconsin School of Medicine, Madison, Wisconsin 53706 USA

ABSTRACT We conducted a deletion analysis of two regions identified in the II-III loop of α_{1S}, residues 671–690, which were shown to bind to ryanodine receptor type 1 (RyR1) and stimulate RyR1 channels in vitro, and residues 720–765 or the narrower 724–743 region, which confer excitation-contraction (EC) coupling function to chimeric dihydropyridine receptors (DHPRs). Deletion mutants were expressed in dysgenic α_{1S}-null myotubes and analyzed by voltage-clamp and confocal fluo-4 fluorescence. Immunostaining of the mutant subunits using an N-terminus tag revealed abundant protein expression in all cases. Furthermore, the maximum recovered charge movement density was >80% of that recovered by full-length α_{1S} in all cases. $\Delta671$–690 had no effect on the magnitude of voltage-evoked Ca$^{2+}$ transients or the L-type Ca$^{2+}$ current density. In contrast, $\Delta720$–765 or $\Delta724$–743 abolished Ca$^{2+}$ transients entirely, and L-type Ca$^{2+}$ current was reduced or absent. Surprisingly, Ca$^{2+}$ transients and Ca$^{2+}$ currents of a moderate magnitude were recovered by the double deletion mutant $\Delta671$–690/$\Delta720$–765. A simple explanation for this result is that $\Delta720$–765 induces a conformational change that disrupts EC coupling, and this conformational change is partially reverted by $\Delta671$–690. To test for Ca$^{2+}$-entry independent EC coupling, a pore mutation (E1014K) known to entirely abolish the inward Ca$^{2+}$ current was introduced. α_{1S} $\Delta671$–690/$\Delta720$–765/ E1014K expressed Ca$^{2+}$ transients with Boltzmann parameters identical to those of the Ca$^{2+}$-conducting double deletion construct. The data strongly suggest that skeletal-type EC coupling is not uniquely controlled by α_{1S} 720–765. Other regions of α_{1S} or other DHPR subunits must therefore directly contribute to the activation of RyR1 during EC coupling.

INTRODUCTION

Skeletal muscle cells respond to membrane depolarization with an elevation in cytosolic Ca$^{2+}$ that develops almost instantaneously and is proportional to the duration of the stimulus (Kim and Vergara, 1998). Two molecular complexes responsible for coupling membrane excitation to Ca$^{2+}$ elevation are the dihydropyridine receptor (DHPR) in the transverse tubular membrane and the ryanodine receptor type 1 (RyR1) in the sarcoplasmic reticulum (SR) membrane (Block et al., 1988). Membrane depolarization is thought to increase the SR Ca$^{2+}$ permeability by a conformational change transmitted from the DHPR to the RyR1 via protein-protein interactions. The processes that couple the movement of electrical charges in the DHPR to the opening of the RyR1 channel have been under close scrutiny for many years (Rios and Pizarro, 1991; McPherson and Campbell, 1993; Coronado et al., 1994; Meissner, 1994; Sutko and Airey, 1996; Franzini-Armstrong and Protasi, 1997).

A critical structural determinant of excitation-contraction (EC) coupling in skeletal muscle is the cytosolic loop between repeats II and III of the DHPR pore subunit α_{1S} (Fig. 1A). The II-III loop, under the influence of membrane depolarization, has been suggested to trigger the release of Ca$^{2+}$ from the SR (Takabe et al., 1990; Garcia et al., 1994). The II-III loop would thus function as a surrogate “gating particle” which, after acquiring the correct conformation, becomes a catalyst for the energetically unfavorable opening of the RyR1 channel. Such a view represents a molecular version of the mechanical plunger model suggested earlier by Chandler et al. (1976). A prediction of this model is that the II-III loop must contain molecular motifs essential for activation of the RyR1 channel. A search for different regions of the II-III loop that affect RyR1 channel activity was conducted using recombinant and synthetic peptides (Lu et al., 1994; El Hayek et al., 1995; O’Reilly and Ronjat, 1999; Duhunty et al., 1999; Gurrola et al., 1999; Casarotto et al., 2000). The strongest stimulation of RyR1 channels in vitro was produced by a synthetic peptide corresponding to α_{1S} residues 671–690. A second peptide, α_{1S} 724–760, had low stimulatory activity, but inhibited the stimulatory activity of the α_{1S} 671–690 peptide when both synthetic peptides were presented to RyR1-containing skeletal SR vesicles (El Hayek et al., 1995). These biochemical studies suggest that the region of the II-III loop encompassed by α_{1S} 671–690 could be the structural element of the II-III loop that triggers EC coupling in the muscle cell (El Hayek et al., 1998).

A second region of the II-III loop critical for EC coupling was identified in dysgenic myotubes by functional expression of chimeric cDNAs for DHPR pore subunits (Nakai et al., 1998). This study showed that a chimera consisting of a cardiac α_{1C} subunit with α_{1S} 720–765 replacing the homologous cardiac region expressed voltage-evoked Ca$^{2+}$ transients of near-normal amplitude. The narrower α_{1S} 725–742...
region recovered a slightly lower than normal Ca\(^{2+}\) transient. Furthermore, the Ca\(^{2+}\) transients in each case persisted in the presence of Ca\(^{2+}\) channel blockers, indicating recovery of skeletal-type EC coupling by the chimeras. Thus the two screening strategies, namely peptide analysis in vitro (El Hayek et al., 1995) and chimera analysis in situ (Nakai et al., 1998), arrived at different conclusions regarding the regions of the II-III loop essential for EC coupling function. To gain more decisive information on the EC coupling domains encoded by the II-III loop, we used a deletion strategy. The data clearly show that 1S 720–765 is essential, but 1S 671–690 can be deleted without a critical loss of function. However, deletion of both regions, which amounts to a loss of ~50% of the II-III loop sequence, does not entirely eliminate skeletal-type EC coupling. This result suggests that regions outside the II-III loop could contribute directly to the mechanism that activates RyR1 during EC coupling. Part of these results were published in abstract form (Ahern et al., 2001a).

MATERIALS AND METHODS

Primary cultures and cDNA transfection

Outbred Black Swiss mice (Charles River, MA) were used to generate colonies of heterozygous dysgenic (1S\(^{mdg}\)) and dyspedic (RyR1\(^{-/-}\)) mice that were genotyped by PCR. RyR1\(^{+/-}\) mice were a gift of Dr. H. Takeshima; 1S\(^{null}\) (1S\(^{mdg/mdg}\)) or RyR1\(^{-/-}\) mice were generated by interbreeding of heterozygous parents. Primary cultures were prepared from enzyme-digested hindlimbs of late-gestation (E18) 1S\(^{mdg/mdg}\) or RyR1\(^{-/-}\) fetuses as described (Beurg et al., 1997). cDNAs of interest and a separate plasmid encoding the T-cell membrane antigen CD8 were mixed at a 1:1 weight ratio and cotransfected with the polyamine LT-1 (Panvera, WI). CD8-transfected cells were recognized by incubation with anti-CD8 antibody beads (Dynal, Norway). Determined by immunostaining, ~80% of the CD8-transfected dysgenic 1S cDNA of interest coexpressed the 1S cDNA of interest.

\(\alpha_{1S}\) II-III loop deletions

All cDNA constructs were sequenced at least twice using BigDye technology (Perkin-Elmer, CA) at a campus facility. For epitope tagging and expression in mammalian cells, the unmodified full-length rabbit \(\alpha_{1S}\) cDNA encoding residues 1–1873 (Genebank M23919 nucleotide coordinates nt 226 to nt 5847) was fused in frame to the first 11 amino acids of the phage T7 gene 10 protein in the mammalian expression vector pSG5 (Stratagene, CA) using AgeI and NotI cloning sites. All constructs were made using the T7-tagged 1S as template in PCR-based strategies. Genebank M23919 nucleotide coordinates are used below to describe primers. A silent HindIII site was introduced by PCR at nt 2228 in the full-length 1S template and cloned into the T7-1S pSG5 vector using AgeI and XhoI sites. The HindIII-XhoI fragment (nt 2228 to nt 2878) encompassing the II-III loop was subcloned into PCR 2.1 TOPO TA (Invitrogen, CA) and this plasmid was further used for PCR reactions. PCR reactions consisted of 10 ng pCR 2.1 TOPO/HindIII-XhoI insert, 15 pmol of each primer, 0.5 mM
Biophysical Journal 81(6) 3294–3296
Ahern et al.

The **XhoI-BglII** fragment of the unmodified \(\alpha_{\text{tg}} \) template encompassing the entire \(\alpha_{\text{tg}} \) sequence was subcloned into a pCR 2.1 TOPO TA vector. For the pore mutation, mismatches were introduced at nt 3265 to nt 4712 for \(\Delta 671–690 \) and at nt 3279 to nt 3300 for \(\Delta 720–765 \) and \(\Delta 724–743 \) for the antisense primer. Double deletions \(\Delta 671–690/ \Delta 720–765 \) and \(\Delta 671–690/ \Delta 724–743 \) were ligated using a HindII/BglII vector carrying the \(\alpha_{\text{tg}} \) sequence.

Whole-cell voltage-clamp

Cells were voltage-clamped 3 to 5 days after transfection. Transfected cells revealed by CD8 beads were voltage-clamped with an Axopatch 200B amplifier (Axon Instruments, CA) and a Digidata 1200 (Axon) pulse generator and digitizer. Linear capacitance, leak currents, and effective series resistance were compensated with the amplifier circuit. The charge movement protocol included a long prepulse to inactivate Na\(^+\) channel and gating currents (Strube et al., 1996). Voltage was stepped from a holding potential of \(-80\) mV to \(-35\) mV for 750 ms, then to \(-50\) mV for 5 ms, then to the test potential for 50 ms, then to \(-50\) mV for 30 ms and finally to \(-80\) mV holding potential. Test potentials were applied in decreasing order every 5 mV from \(+100\) or \(+110\) mV to \(-75\) mV. The inter-test pulse period was 10 s. Nonlinear charge movement from a more negative holding potential, \(-120\) mV, resulted in \(Q \)-V curves with the same maximum charge movement density. On-line subtraction of the linear charge was done by a P/4 procedure. The P/4 pulses were delivered immediately before the protocol from \(-80\) mV in the negative direction.

To verify that the P/4 pulses adequately subtracted the linear component of the charging current, we investigated the voltage-dependence of the cell membrane capacity in the range of \(-80\) to \(-120\) mV. In this range, the membrane capacity varied linearly with voltage, within a 0.5% error, in all cells investigated (>20 cells). Controls indicated that nontransfected dysgenic myotubes (see Table 1) had minimal charge movement and did not generate detectable Ca\(^{2+}\) transients. An overwhelming majority of these cells (45 of 47) did not express the low-density dysgenic Ca\(^{2+}\) current described elsewhere in dysgenic mice of a different genetic background (Strube et al., 1998). The voltage dependence of charge movements (\(Q \)) peak intracellular Ca\(^{2+}\) (\(\Delta F/F \)) and Ca\(^{2+}\) conductance (\(G \)), was fitted according to a Boltzmann distribution (Eq. 1): \(A = A_{\text{max}}/(1 + \exp(-V/V_{1/2}k)) \). \(A_{\text{max}} \) is \(Q_{\text{max}}, \Delta F/F_{\text{max}}, \) or \(G_{\text{max}} \), \(V_{1/2} \) is the potential at which \(A = A_{\text{max}}/2 \); and \(k \) is the slope factor.

Solutions

The external solution in all cases was (in mM): 130 TEA methanesulfonate, 10 CaCl\(_2\), 1 MgCl\(_2\), 10 HEPES titrated with TEA(OH) to pH 7.4. For Ca\(^{2+}\) transients and Ca\(^{2+}\) currents, the pipette solution was (in mM): 140 cesium aspartate, 5 MgCl\(_2\), 0.1 EGTA (Ca\(^{2+}\) transients) or 5 mM EGTA (Ca\(^{2+}\) currents and specified Ca\(^{2+}\) transients), and 10 MOPS-CsOH pH 7.2. For

TABLE 1 Ca\(^{2+}\) conductance, charge movement, and Ca\(^{2+}\) transients of \(\alpha_{\text{tg}} \) deletion mutants

<table>
<thead>
<tr>
<th></th>
<th>(Q_{\text{max}})</th>
<th>(V_{1/2})</th>
<th>(k)</th>
<th>(\Delta F/F_{\text{max}})</th>
<th>(V_{1/2})</th>
<th>(k)</th>
<th>(G_{\text{max}})</th>
<th>(V_{1/2})</th>
<th>(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_{\text{tg}}) null</td>
<td>0.8 ± 0.2</td>
<td>-1.7 ± 3.7</td>
<td>11.9 ± 2.2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RyR1 null</td>
<td>3.9 ± 0.5</td>
<td>17.4 ± 4.5</td>
<td>15.9 ± 1.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(\Delta 671–690)</td>
<td>5.4 ± 0.5</td>
<td>15.5 ± 1.9</td>
<td>20.3 ± 2.2</td>
<td>3.1 ± 0.4</td>
<td>10.9 ± 1.6</td>
<td>11.2 ± 1.0</td>
<td>105 ± 9.2</td>
<td>30.5 ± 3.5</td>
<td>4.3 ± 1.1</td>
</tr>
<tr>
<td>(\Delta 720–765)</td>
<td>5.5 ± 0.8</td>
<td>21.0 ± 5.6</td>
<td>24.7 ± 1.7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(\Delta 724–743)</td>
<td>5.5 ± 0.5</td>
<td>14.0 ± 2.3</td>
<td>17.9 ± 0.9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(\Delta 671–690/ \Delta 720–765)</td>
<td>5.3 ± 0.8</td>
<td>21.5 ± 5.5</td>
<td>21.3 ± 2.0</td>
<td>0.5 ± 0.1</td>
<td>9.5 ± 4.5</td>
<td>9.5 ± 0.6</td>
<td>63.8 ± 7.1</td>
<td>31.5 ± 1.6</td>
<td>6.5 ± 0.5</td>
</tr>
<tr>
<td>WT</td>
<td>6.3 ± 0.2</td>
<td>16.7 ± 3.5</td>
<td>19.6 ± 1.4</td>
<td>2.9 ± 0.4</td>
<td>11.0 ± 1.9</td>
<td>8.4 ± 1.0</td>
<td>109.5 ± 8.3</td>
<td>25.5 ± 2.1</td>
<td>4.9 ± 0.7</td>
</tr>
</tbody>
</table>

Entries correspond to mean ± SEM of Boltzmann parameters fitted to each cell. The number of cells is in parentheses. Confocal fluo-4 fluorescence change (\(\Delta F/F < 0.2 \) or L-type Ca\(^{2+}\) current (<20 pA/Cell) were not detectable in the indicated number of cells.

*Data compared to control (WT) with \(t \)-test significance \(p < 0.05 \). One-way ANOVA of \(Q_{\text{max}}, Q_{1/2}, \Delta F/F_{\text{max}}, \Delta F/F_{1/2}, G_{\text{max}}, \) and \(G_{1/2} \) of II–III loop deletion constructs and WT had significance \(p > 0.18 \). Excluded from the conductance averages are two cells expressing \(\Delta 671–690/ \Delta 720–765 \) that had undetectable L-type Ca\(^{2+}\) current, but large charge movements (\(Q_{\text{max}} = 4.9 \) and 4.6 fC/pF).

<table>
<thead>
<tr>
<th></th>
<th>(Q_{\text{max}})</th>
<th>(\Delta F/F_{\text{max}})</th>
<th>(G_{\text{max}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_{\text{tg}}) null</td>
<td>3294</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RyR1 null</td>
<td>3295</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(\Delta 671–690)</td>
<td>3296</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(\Delta 720–765)</td>
<td>3297</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(\Delta 724–743)</td>
<td>3298</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>WT</td>
<td>3299</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Table dimensions: 3294×3296
Ahern et al.
charge movements, the internal solution was (in mM): 120 NMG (N-methyl glucamine)-glutamate, 10 HEPESS-NMG, 10 EGTA-NMG, pH 7.3 (Ahern et al., 2001b). For charge movements the external solution was supplemented with 0.5 mM CdCl2 and 0.5 mM LaCl3 to block the Ca2+ current and 0.05 mM TTX to block residual Na+ current.

Confocal fluorescence microscopy

Confocal line-scan measurements were performed as described (Beurg et al., 1999a, b; Conklin et al., 2000). Cells were loaded with 4 mM fluo-4 AM (Molecular Probes, OR) for ~30 min at room temperature. When indicated, cells were dye-loaded through the patch pipette with internal solution supplemented with 1 mM fluo-4 (free acid). Dye fluorescence was imaged in an inverted Olympus microscope with a 20× objective (N.A. 0.4) and a Fluoview confocal attachment (Olympus, NY). Excitation light was provided by a 5 mW Argon laser attenuated to 6% with neutral density filters. In line-scan mode the line had a dimension of 512 pixels (0.3–0.4 μm/pixel) and the acquisition period of a single 512-pixel line was 2.05 ms.

Immunostaining

Transfected cells were kept in culture for 3 to 5 additional days and afterward fixed and processed for immunofluorescence (Beurg et al., 1999b; Ahern et al., 2001b). Controls shown elsewhere indicated that dysgenic myotubes do not express the mdg gene product, a truncated α1S, at levels detectable by our immunostaining technique (Strube et al., 1998); α1S was identified with a mouse monoclonal antibody against a T7 epitope fused to the N-terminus of the α1S construct. The anti-T7 antibody (Novagen, Madison, WI) was used at a dilution of 1:1000. The secondary antibody was a fluorescein-conjugated goat anti-mouse IgG (Boehringer Mannheim, Indianapolis, IN) used at a dilution of 1:1000. Confocal images of immunofluorescence had a dimension of 1024 × 1024 pixels (0.35 μm/pixel) and were obtained with a 40× oil-immersion objective (N.A. 1.3). Images were Kalman-averaged three times and the pixel intensity displayed as 16 levels of gray in reverse. All images were acquired using minimal laser power and predetermined PMT settings to avoid pixel saturation and for accuracy in the comparison of images.

RESULTS

All constructs carried an 11-residue T7 tag at the N-terminus, which is useful for determining relative protein expression levels. Constructs were transiently expressed in dysgenic myotubes using the pSG5 mammalian expression vector and were identified by the deleted residues. A T7-tagged full-length α1S expressed in dysgenic myotubes was used as control and was identified as WT – 671 – 724. The pe-
response to a 50-ms depolarization to +90 mV from a holding potential of -40 mV is shown in each panel. A second line-scan in some panels shows a Ca\(^{2+}\) transient activated by 10 mM caffeine in a myotube expressing the same construct. All line-scan images have a duration (x axis) of 2.05 s and a variable cell dimension (y axis) indicated in the figure legend. Line-scans were integrated across the y axis to obtain the time course of the average fluorescence change. The highest fluorescence intensity during 1.9 s following the depolarization, the peak fluorescence, is shown in each panel as a function of voltage. For WT, \(\Delta 671-690\), and \(\Delta 671-690/\Delta 720-765\), the mean peak fluorescence was fit to a Boltzmann equation indicated by the sigmoidal line. As shown by the top left and center panels of Fig. 3, \(\Delta 671-690\) expressed a Ca\(^{2+}\) transient versus voltage relationship strikingly similar to that expressed by the control construct. Hence, the 671–690 region could not possibly have an essential role in the activation of Ca\(^{2+}\) transients in this expression system. This conclusion was further supported by a cell-by-cell analysis of the Boltzmann parameters (Table 1) compared to control (t-test significance \(p = 0.68, 0.98, 0.17\) for \(\Delta F/F_{\text{max}}, V_{1/2}\), and \(k\), respectively). In contrast, \(\Delta 720-765\) failed to evoke Ca\(^{2+}\) transients entirely (Fig. 3, top right). Consequently, the latter region of the II-III loop and not the 671–690 region was critical for triggering Ca\(^{2+}\) transients. The limit of fluorescence detection, based on microscope settings and the average resting fluo-4 fluorescence, was 0.1 \(F/F_{\text{max}}\) units; that is, we could detect an 10% change above the cell resting fluorescence. Using a pseudo-ratiometric equation for estimating the cytosolic free Ca\(^{2+}\) and assuming a resting free Ca\(^{2+}\) of 100 nM (Conklin et al., 1999), the nominal limit of resolution of free Ca\(^{2+}\) change was ~200 nM; thus changes in free Ca\(^{2+}\) concentration under this limit could have taken place and would have escaped detection. Because \(\Delta 720-765\) removes more than twice as many residues as \(\Delta 671-690\), we tested the narrower \(\Delta 724-743\) region, which also confers skeletal EC function to a cardiac \(\alpha_{1C}\) subunit (Nakai et al., 1998). We found that \(\Delta 724-743\), like the longer deletion of the same region,
abolished Ca$^{2+}$ transients entirely (Fig. 3, bottom left). Loss of Ca$^{2+}$ transients could be due to a loss of Ca$^{2+}$ storage capacity of the transfected cell, so to rule out this possibility cells expressing Δ720–765 or Δ724–743 were perfused with external solution supplemented with 10 mM caffeine. The insets in Fig. 3 show that caffeine evoked robust Ca$^{2+}$ transients and thus the Ca$^{2+}$ storage capacity of transfected cells was not adversely modified. The absence of Ca$^{2+}$ transients in the presence of normal charge movements suggested that Δ724–743 and Δ720–765 expressed a DHPR in which the voltage sensor was truly uncoupled from SR Ca$^{2+}$ release.

Residues 671–690 and 720–765 are the only two regions of the II-III loop that have been reported to screen positively for EC coupling-related functions, albeit by different techniques. We thus investigated whether voltage-evoked Ca$^{2+}$ transients were expressed when both regions were removed from the II-III loop. Surprisingly, the bottom center panel of Fig. 3 shows that Δ671–690/Δ720–765 expressed Ca$^{2+}$ transients that increased with depolarization and saturated at a maximum amplitude (∆F/∆F$_{max}$) ~20% of control. This result was highly consistent and was observed in 13 of 13 myotubes from three batches of cultured cells. Analysis of the voltage-dependence of the Ca$^{2+}$ transient showed that neither the midpoint potential nor the steepness of the fluorescence versus voltage relationship was affected by this double deletion (Table 1). These results provide a clear indication that the skeletal DHPR has a latent EC coupling activity that is unmasked by simultaneous removal of residues 671–690 and 720–765. In molecular terms, the 720–765 region could be a conformation-sensitive region of the II-III loop stabilized by strong residue-residue interactions with other regions of the II-III loop. Thus, the loss of EC coupling produced by removal of residues 720–765 could
be the result of a conformation change that is partially reverted by a second conformational change in the II-III loop produced by removal of residues 671–690. To further test whether the latent EC coupling activity could have originated from additional regions of the II-III loop, we deleted all the sequence between the two deletions, namely, residues 671–765. Unfortunately, Δ671–765 failed to express charge movements, hence these data were not included in the present analysis. We also tested EC coupling recovery by Δ671–690/Δ724–743 (Fig. 3, bottom right). The results with the latter construct were far less consistent, and small Ca2+ transients (∆F/Fmax ≈ 0.2) were only observed in 2 of 11 cells from three batches of cultured cells. The reasons for this inconsistency are not clear, especially since this double deletion removes fewer residues from the II-III loop than Δ671–690/Δ720–765.

We further investigated whether the Ca2+ current expressed by Δ671–690/Δ720–765 contributed to the triggering of the Ca2+ transient. Ca2+-entry dependent EC coupling is normally not present in skeletal myotubes, but can be induced by expression of α1S in dysgenic myotubes or modified DHPR β subunits in β null myotubes (Garcia et al., 1994; Sheridan et al., 2001). In the present case, such a mechanism could have been induced by an aberrant conformation of the α1S protein carrying the two internal deletions. A straightforward pharmacological intervention consists of comparing Ca2+ transients in the presence and absence of inorganic Ca2+ channel blockers. However, these compounds are known to partially, yet significantly, depress voltage-evoked Ca2+ transients in skeletal myotubes (see Fig. 3A of Wilkens et al., 2000). To avoid this complication, we blocked the Ca2+ current by replacing a conserved pore glutamate by lysine at position 1014 in repeat III of α1S. The E1014K substitution in a full-length α1S was previously shown to abolish the inward Ca2+ current entirely, yet the magnitudes of the expressed Ca2+ transients were unaltered (Dirksen and Beam, 1999). In Fig. 4A we compared whole-cell currents expressed by Δ671–690/Δ720–765 and Δ671–690/Δ720–765/E1014K in standard external solution containing 10 mM Ca2+ at the indicated potentials from a holding potential of −40 mV. In agreement with the previous results (Dirksen and Beam, 1999) inward currents during the pulse were entirely abolished by the E1014K substitution. To determine whether inward tail currents were present, the residual cell capacitance was subtracted with a −P/4 protocol. Selected voltage steps that activated large currents during the pulse, namely +30 mV for the Ca2+-conducting construct and +70 mV for the pore mutant, were preceded by −P/4 pulses of the same duration and delivered from the same holding potential. Fig. 4B shows difference currents after −P/4 subtraction at the two potentials indicated above and at −30 mV that did not activate ionic currents. The results indicated that inward tail currents were not present in the Δ671–690/Δ720–765/E1014K construct. The voltage dependence of the pulse current is shown in Fig. 4C. Starting at +20 mV, the E1014K substitution unmasked a large outwardly rectifying current which in native Ca2+ channels is observed at much higher potentials (Hess et al., 1986). More importantly, inward current was not present in the E1014K construct over the entire range of voltages used to activate the Ca2+ transient. In Fig. 5A we compare Ca2+ transients and whole-cell currents expressed in the same cell by Δ671–690/Δ720–765 and Δ671–690/Δ720–765/E1014K. The time course and amplitude of the Ca2+ transients were remarkably similar despite the presence of a measurable Ca2+ current in the Ca2+-conducting construct and the absence of inward currents in the E1014K construct at all potentials. Furthermore, the voltage-dependence of the Ca2+ transient collected in several cells (Fig. 5B) were indistinguishable (t-test significance p = 0.13, 0.9, 0.38 for ∆F/Fmax, V1/2, and k, respectively). Thus, the EC coupling recovered by Δ671–690/Δ720–765 was strictly a Ca2+-entry independent skeletal-type EC coupling.

The kinetics of SR Ca2+ release can be inferred from the time course of the Ca2+ transient measured in the presence of a Ca2+ buffer that eliminates fluorescence due to Ca2+ accumulation in the cytosol. In a Ca2+-buffered internal solution, the rate of change of cytosolic Ca2+ approximates the net difference between the rate of SR Ca2+ release and the rate of cytosolic Ca2+ removal (Melzer et al., 1984). Furthermore, because the SR Ca2+ release rate is much faster than the Ca2+ removal rate, d(ΔF/F)/dt immediately after the depolarization is dominated by the SR Ca2+ release rate (Melzer et al., 1984). Fig. 6A shows Ca2+ transients obtained by integration of confocal line-scans in myotubes internally dialyzed with internal solution supplemented with 5 mM EGTA and 1 mM fluo-4 free acid present in the patch pipette. Due to the sharp diminution in the amplitude of the fluorescence signal produced by EGTA, we could only perform these experiments in cells transfected with the control construct and Δ671–690, which expressed comparatively large Ca2+ transients. In response to a 50-ms depolarization there was a rapid increase in cytosolic Ca2+ followed by an equally fast decay upon termination of the depolarization. The fast decay was followed by a much slower component that was completed in the time scale of seconds. The time course of the fast component is consistent with the rate of termination of SR Ca2+ release, which for short depolarizations has a time constant of tens of milliseconds in adult frog fibers (Simon et al., 1989). The slow component is consistent with Ca2+ removal stimulated by the Ca2+ pump, although this has not been determined. The rate of change of fluorescence during the depolarization, d(ΔF/F)/dt, is shown in Fig. 6B for a pulse to +90 mV. For both constructs there was a sharp increase in the rate of change of fluorescence followed by an equally fast decline while the pulse was at +90 mV. This result is entirely consistent with determinations in adult rat skeletal muscle and suggests the presence of fast rates of activation and
inactivation of SR Ca\(^{2+}\) release (Shirokova et al., 1996; Szentesi et al., 1997). Fig. 6C shows the peak rate of fluorescence change during the upstroke of the depolarization for the control construct and Δ671–690 at two potentials. In both cases the rate of cytosolic Ca\(^{2+}\) increase was comparatively faster for Δ671–690 (p < 0.05). However, since the rate of fluorescence change and the confocal scan rate (2.05 ms per scan) were of the same magnitude, the results must be interpreted with caution. At the very least, these results indicate that the Ca\(^{2+}\) release rate expressed by Δ671–690 is not kinetically impaired. A submillisecond-scanning confocal microscope would be required to fully resolve the Ca\(^{2+}\) release rate expressed by this construct.

The voltage dependence of the Ca\(^{2+}\) conductance expressed by the II-III loop deletion constructs is shown in Fig. 7. In each panel the sigmoidal line shows a Boltzmann fit of the mean conductance and the inset shows whole-cell Ca\(^{2+}\) current in response to a voltage step to +30 mV from a holding potential of −40 mV. The endogenous dysgenic Ca\(^{2+}\) current (not shown) was detected in only 2 of 47 nontransfected myotubes analyzed at a resolution of ~20 pA/cell. This is a Ca\(^{2+}\) current of low-density and fast activation kinetics previously described in dysgenic myotubes (Adams and Beam, 1990) and, in our hands, is far more frequent in mice of a different genetic background (Strube et al., 1998). The maximum Ca\(^{2+}\) conductance, \(G_{\text{max}}\), of the control construct was ~110 pS/pF with a half-activation potential of +25 mV (Fig. 7, top left). The mean \(G_{\text{max}}\) expressed by Δ671–690 (top center) was similar, although the half-activation potential was slightly more
positive. However, a cell-by-cell analysis (Table 1) did not reveal significant differences in any of the fitted Boltzmann parameters compared to control (t-test significance p_{11005} 0.72, 0.23, and 0.59 for G_{11001}, V_{11021}, and $k_{150x278}$, respectively). Ca_{11001} current was undetectable (<20 pA/cell) in the major -
ity of myotubes expressing $720-765$ or $724-743$ (13 of 16 cells from six cultures and 8 of 11 cells from three cultures, respectively). However, in a few instances these two constructs expressed a measurable Ca_{11001} current of a magnitude 4-fold lower than WT control (not shown).

Because all cells analyzed expressed charge movements in a consistent manner (Table 1), the inability of these two constructs to express Ca_{11001} current was unrelated to the lack of targeting of DHPRs to the cell membrane. In contrast, the double deletion constructs expressed, in the majority of tested cells, a high-density Ca_{11001} current of approximately half the control density, $60-70$ pS/pF (Fig. 7, bottom left and right). Ca_{11001} current expression by $671-690/720-765$ and $671-690/724-743$ was observed in 5 of 7 cells from four cultures and 6 of 6 cells from three cultures, respectively. Two cells expressing the former construct failed to express Ca_{11001} current but expressed large charge movements, which are indicated in the figure legend. Ca_{11001} current expression by $671-690/724-743$ was observed consistently and this result was deemed highly significant since, at the same time, this construct consistently failed to trigger Ca_{11001} transients. Thus, there is a clear molecular distinction between the structural determinants of the Ca_{11001} current and those of EC coupling. In summary, the severe decrease in Ca_{11001} conductance produced by $724-743$ and $720-765$ agrees with previous observations showing that this region of the II-III loop controls expression of the L-type Ca_{11001} current and is critical for retrograde signaling from RyR1 to the DHPR (Grabner et al., 1999). However, the observation that the preponderance of cells transfected with $671-690/720-765$ and $671-690/724-743$ expressed a high-density Ca_{11001} current is difficult to explain within the boundaries of the present understanding of retrograde signaling (see Discussion).

A physical uncoupling of the DHPR and RyR1 occurs in RyR1 null myotubes, and this is manifested in the kinetics of activation of the L-type Ca_{11001} current, which is significantly faster in RyR1 null than in normal myotubes (Avila and Dirksen, 2000). Because $671-690/724-743$ was
unable to couple voltage-sensing to SR Ca2+ release but \(\Delta 671-690/\Delta 720-765\) produced a consistent EC coupling, we compared the kinetics of activation of the Ca2+ currents expressed by both constructs. Such an analysis could provide an indication of whether \(\Delta 671-690/\Delta 720-765\) induces a physical separation of the DHPR and RyR1. Fig. 8 A shows scaled Ca2+ currents in response to a depolarization to +40 mV from a holding potential of −40 mV. In agreement with the previous study (Avila and Dirksen, 2000), we found that Ca2+ current activation was composed of a fast component followed by a much slower component during prolonged depolarization. In the current records (gray traces), the slow component is noticeable at times longer than 50 ms. The visual impression was confirmed by chi-square tests performed on monoexponential (\(\chi^2 = 84\) and 3.8 for RyR1 null and control, respectively) and biexponential (\(\chi^2 = 0.21\) and 1.88, respectively) fits and the latter are shown in Fig. 8 A by the dark lines. As shown by the histograms in Fig. 8 B, the fast and slow components of activation were comparatively faster in RyR1 null than in control myotubes, which is also in agreement with the previous study. The kinetics of activation of the Ca2+ current expressed by \(\Delta 671-690/\Delta 720-765\), \(\Delta 671-690/\Delta 724-743\), and \(\Delta 671-690\) were not significantly different from control but significantly slower than the Ca2+ current of RyR1 null myotubes. Several statistical analyses of these data and the relative amplitude of the two components of the exponential fits are indicated in the figure legend. The kinetics of activation of the L-type Ca2+ current was previously suggested to vary with the level of expression of \(\alpha_1\)S in myotubes (Adams et al., 1996). In Fig. 8, C and D, we plotted the fitted activation time constant as a function of the Ca2+ current density for each cell. These data show that within the range of Ca2+ current density achieved in the present study, namely 1–5 pA/pF, we did not find such a correlation for any of the constructs, either separately or pooled (\(R^2 = 0.21\) and 0.18 for plots in Fig. 8, C and D, respectively).

Hence, the similar activation kinetics of \(\Delta 671-690/\Delta 720-765\), \(\Delta 671-690/\Delta 724-743\), \(\Delta 671-690\) and WT observed here are more likely to reflect inherent properties of the DHPR-RyR1 interaction rather than the level of maturity of the myotube. In summary, the kinetics of activation of the expressed L-type Ca2+ current strongly supports the view that the EC uncoupled phenotype of \(\Delta 671-690/\Delta 724-743\) or the partially coupled phenotype of \(\Delta 671-690/\Delta 720-765\) may not involve a physical separation of the DHPR and RyR1.
DISCUSSION

The main observations of the present work are as follows: 1) removal of α1S II-III loop residues 671–690 does not eliminate the EC coupling and Ca$^{2+}$ channel functions of the DHPR; 2) removal of α1S residues 720–765 or residues 724–743 eliminates EC coupling entirely and most of the Ca$^{2+}$ current; 3) removal of α1S residues 720–765 and residues 671–690 partially but not entirely eliminates skeletal-type EC coupling and Ca$^{2+}$ current; and 4) removal of α1S residues 724–743 and residues 671–690 eliminates EC coupling entirely, but Ca$^{2+}$ current only partially. Observations (1) and (2) allow us to conclude unambiguously that α1S 720–765 is an EC coupling-sensitive region of the II-III loop, whereas α1S 671–690 is dispensable. Also, (3) suggests that regions other than α1S 671–690 and α1S 720–765 are directly engaged in voltage-dependent activation of RyR1. Finally, (4) demonstrates that the Ca$^{2+}$ channel and EC coupling functions of the DHPR have different molecular underpinnings.

Previously, functional expression studies in dysgenic cells were unable to demonstrate an influence of α1S 671–790 in the EC coupling characteristics of myotubes when this region of α1S was replaced by the homologous region of mammalian cardiac α1C (Nakai et al., 1998) or replaced by a nonhomologous II-III loop of invertebrate origin (Wilkens et al., 2001). Furthermore, scrambling of the RKRRK binding motif of α1S 671–790 (Proenza et al., 2000a) or complete deletion of the region (Ahern et al., 2001b) failed to significantly alter the skeletal EC coupling phenotype. However, in the present work, the removal of α1S 671–790 was not entirely without consequence. Deletion of this region had an unforeseen positive effect of the kinetics of SR Ca$^{2+}$ release and was critical for unmasking the new component of EC coupling observed in the absence of α1S 720–765; hence α1S 671–790 is neither functionally or structurally inert. The two experimental observations mentioned above are consistent with the view that the 671–790 region participates in negative control either slowing the rate of SR Ca$^{2+}$ release or altogether blocking SR Ca$^{2+}$ release initiated by signals elsewhere in the DHPR. We realize, however, that a proposed inhibitory function of the 671–690 region is in sharp contrast with the stimulatory effect of the 671–690 peptide on RyR1 channels reported in several studies.
The pre-exponential factors of the fast and slow components were, respectively, from the first 16 ms of the trace were omitted. The line is a biexponential fit of the pulse current 16 ms after the onset of the pulse with fast and slow time constants, in ms, from left to right: 2.7, 16.1; 15.7, 165; 31.9, 165; 13.9, 135; 8.7, 159. The pre-exponential factors of the fitted fast and slow components for the same cells were 0.29 and 0.66. RyR1 channels respond to many different kinds of ligands (see Table 2 of Coronado et al., 1994), including charged ligands such as polylysine (El-Hayek and Ikemoto, 1998). We would thus speculate that the lysine/arginine RKRRK motif of the 671–690 peptide might have contributed to overrepresent the stimulatory activity of the α_{1S} 671–690 peptide over and above that of other II-III loop peptides tested (Saiki et al., 1999; Stange et al., 2001).

The critical participation of α_{1S} 720–765 in EC coupling, the region previously identified by functional screening of α_{1C}/α_{1S} chimeras, was reaffirmed by the present results. However, the data also showed that a signal capable of triggering skeletal-type EC coupling was generated elsewhere when α_{1S} 720–765 and α_{1S} 671–690 were absent. It could be argued that the double α_{1S} 671–690/720–765 deletion produced artifactual interactions with RyR1 and that these interactions, normally not present between α_{1S} and RyR1, would be responsible for the recovered EC coupling. This possibility is considered highly unlikely due to three fundamental reasons. First, the Boltzmann parameters of charge movement expressed by the double deletion construct and those expressed by the control construct are statistically undistinguishable (t-test significance p > 0.12). Hence the trigger signal itself was not altered. Second, except for the maximum amplitude of the Ca^{2+} transient, the midpotential point and the steepness factor k of the Ca^{2+} transient versus voltage curve were identical to controls. Therefore, the characteristics of the outgoing signal that activates the Ca^{2+} transient were only partially modified. Finally, the kinetics of the expressed Ca^{2+} transient was not modified. None of these results is consistent with the presence of artifactual interactions. Of these results, the slow biphasic Ca^{2+} current recovered by Δ671–690/Δ720–765, with a kinetics of activation similar to the control Ca^{2+} current (Fig. 8), was deemed especially significant. It has
been argued that α_{1S}^{1S} 720–765 modulates expression of the Ca$^{2+}$ current by retrograde signaling from the RyR1 to the DHPR. The recovery of more than half of the control Ca$^{2+}$ conductance by $\Delta 671$–690/720–765 and by $\Delta 671$–690/724–743 demonstrates that this region of the II-II loop is unlikely to harbor a unique signal controlling Ca$^{2+}$ current expression. Instead of a signaling domain, the 720–765 region could be a conformation-sensitive “permissive” region controlling protein folding. Disruption of proper protein folding by deletion of residues in this region could impair EC coupling signals generated elsewhere in the DHPR. Alternatively, α_{1S}^{1S} 720–765 may be one of several regions involved in bidirectional signaling between the DHPR and RyR1. The latter explanation is highly attractive because it also implies that different DHPR-RyR1 coupling domains could trigger SR Ca$^{2+}$ release perhaps independently of each other. Such a model could provide a basis for understanding the phenotype of the α_{1S}^{1S} 720–765 region.

The mechanism by which EC coupling is eliminated by removal of α_{1S}^{1S} 720–765 and recovered by removal of α_{1S}^{1S} 720–765 and α_{1S}^{1S} 671–690 is reminiscent of the electrostatic interactions that hold the voltage sensor of the Shaker K$^+$ channel in a functional state (Papazian et al., 1995). This study showed that some charge neutralization mutations in the S4 transmembrane segment block protein folding. In these cases, channel function can be rescued by a second charge neutralization in S2 or S3. The functional rescue by double mutations suggested that S4 forms a strong network of local electrostatic charges with other transmembrane domains. The observation in the Shaker K$^+$ channel is directly applicable to the II-III loop, which contains several loci of electrostatic charge within α_{1S}^{1S} 671–690 and α_{1S}^{1S} 720–765 and also outside these two regions. For example, D744DEEEDE749 could form a lattice of negative electrostatic charges stabilized by a lattice of positive charges provided by R681KRRK685 (see Fig. 1 A). Removal of α_{1S}^{1S} 720–765 would thus require removal of α_{1S}^{1S} 671–690 for maintenance of II-III loop stability. The same example would explain why the EC coupling loss produced by $\Delta 724$–743, which does not remove D744DEEEDE749, cannot be rescued by further deletion of α_{1S}^{1S} 671–690. However, this model would not explain why $\Delta 671$–690 alone does not disrupt EC coupling. It could be that D744DEEEDE749 or other charged residues in the 720–765 region can be equally well-stabilized by charges inside and outside the 671–690 region. A study of charge-charge interactions in the II-III loop by mutagenesis and functional expression is clearly required to provide an explanation consistent with all results.

Potential EC coupling domains outside the II-III loop have been identified in the carboxyl terminus of α_{1S} and the carboxyl terminus of the β_{1a} subunit of the DHPR. The carboxyl terminus of α_{1S} binds to RyR1, inhibits RyR1 channels incorporated in planar bilayers, and participates in targeting the DHPR to junctions containing RyR1 (Slavik et al., 1997; Proenza et al., 2000b; Flucher et al., 2000; Morales et al., 2001). DHPR β_{1} is critical for expression of Ca$^{2+}$ current, charge movements, Ca$^{2+}$ transients, and Ca$^{2+}$ sparks of correct morphology (Beurg et al., 1999a, b; Conklin et al., 1999). Additional observations identified the participation of the C-termini of β_{1a} in EC coupling under conditions in which the density of DHPR voltage sensors expressed in the plasma membrane was not a limiting factor (Beurg et al., 1999b; Sheridan et al., 2001). Whether these regions contribute to EC coupling in the absence of the α_{1S}^{1S} 720–765 region of the II-III loop remains an attractive possibility. Finally, it is important to point out that although the fluorescence signal generated by $\Delta 671$–690/$\Delta 724$–765 is small, this result cannot be taken as an argument favoring the notion that the bulk of the EC coupling is initiated by the II-III loop and that a minor component is initiated outside of the II-III loop. A previous report indicates that \sim80% of the EC coupling fluorescence signal can also be eliminated, under conditions of normal charge movement, by deletions within the DHPR β_{1a} subunit in the context of an otherwise wild-type DHPR (Beurg et al., 1999b; Sheridan et al., 2001). Hence, the output signal leaving the DHPR receives contributions from more than one subunit and, by nature, is nonadditive. The relative contribution to EC coupling of different domains within the DHPR is a challenging issue that needs to be addressed in the future.

This work was supported by National Institutes of Health Grants AR46448 and HL47053, and by predoctoral fellowships from American Heart Association to C.A.A.

REFERENCES

